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Characterization of Risk From Airborne Benzene Exposure in the State of Florida 

Giffe Johnson 

ABSTRACT 

Environmental airborne benzene is a ubiquitous hazardous air pollutant whose 

emissions are generated from multiple sources, including industrial emissions, fuel 

station emissions, and automobile emissions.  Chronic occupational exposures to 

elevated levels of benzene are known to be associated with leukemic cancers, in 

particular, acute myeloid leukemia (AML), though epidemiological evidence 

regarding environmental exposures and subsequent AML developmentis lacking.  

This investigation uses historical airborne monitoring data from six counties in the 

State of Florida to characterize the environmental cancer risk from airborne benzene 

concentrations using current Federal and State regulatory analysis methodology, and 

a comparative analysis based on occupational epidemiological evidence.  Airborne 

benzene concentrations were collected from 24 air toxics monitoring stations in 

Broward, Duval, Orange, Miami-Dade, Hillsborough, and Pinellas counties.  From 

the years 2003 – 2006, 3,794 air samples were collected using 8, 12, and 24 hr 

samples with sub-ambient pressure canister collectors consistent with EPA benzene 

methodological protocols 101 and 176.  Mean benzene concentrations, by site, ranged 

from 0.18 – 3.58 ppb.  Using risk analysis methodology consistent with the EPA and 

the Florida Department of Environmental Protection (FLDEP) the resulting cancer 

risk estimates ranged from 4.37 x 10-6 to 8.56 x 10-5, exceeding the FLDEP’s 
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acceptable cancer risk level, 1 x 10-6 for all monitoring sites.  The cumulative lifetime 

exposures were calculated in ppm-years by site, ranging from 0.036 – 0.702 ppm-

years.  A comparative analysis with available epidemiological literature revealed that 

associations between benzene exposure and cancer outcomes were related to 

cumulative lifetime exposures in great excess of 1 ppm-years.  The results of this 

investigation indicate that it is not reasonable to expect additional cancer outcomes in 

Florida residents as a result of airborne benzene exposures consistent with measured 

concentrations, despite the fact that all regulatory risk calculations exceed acceptable 

cancer risk levels in the State of Florida. 
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Chapter 1.0: Introduction 
 
1.1 Overview of Benzene Related Health Research 

Concern over the health hazards of benzene exposure has existed since the early 20th 

century. Researchers began reporting acute toxicities from extremely high exposures 

(3,000 to 20,000 ppm) such as anesthesia, confusion, and death in the 1920’s (1-3).  

Chronic toxicities began to be reported soon after, with hematologic toxicity being 

most noted in the suppression of red and white blood cells, exhibiting as pancytopenia 

and aplastic anemia (1-6).  One of the first cases of leukemia reported to be associated 

with benzene exposure occurred in 1928, though the link between benzene exposure 

and leukemia was not firmly established until several decades later (7).  The 

carcinogenic nature of benzene began to come into focus in the 1970s, when larger 

groups of exposed workers started to see inordinate numbers of leukemia cases (8-

13).  Goguel et al. 1967, Girard and Revol 1970, and Aksoy et al. 1972 reviewed 

several of the first case series that seemed to indicate a more specific relationship 

between excessive benzene exposures and acute myelogenous leukemia (AML) (14-

16).  Vigliani et al. 1964 and Askoy et al. 1974 made the first attempts to characterize 

the risk of benzene exposure and leukemia, but unfortunately lacked a sufficient 

exposure assessment to produce any reliable estimates (17-18).  In the 1980s and 

1990s, the attention focused on exposure to petroleum and chemical workers to more 

clearly assess specific levels of benzene exposure and the risk of leukemogenesis (7).  

As well, non-occupational exposures began to be explored in this time period, 
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focusing on indoor air, tobacco usage, and self-service gasoline station benzene 

exposures (19-20).  The focus of research in the 21st century undoubtedly lies in the 

pursuit of establishing a clear dose-response relationship between low level benzene 

exposures and leukemogenesis, in both occupational and environmental settings, in 

order to ascertain a level benzene exposure that will ensure the safety of workers, as 

well as the safety of the general population. 

 

1.2.1 Acute Lethality 

The inhalation LC50 value for rats has been determined to lie between 13,700 ppm 

and 16,000 ppm for a 4-hour exposure (21-22).  Green et al. 1981 observed mice 

exposed by inhalation to doses of benzene up to 4,862 ppm, 6 hours/day for 5 days 

without lethality (23).  Deaths in humans from acute benzene exposures are often 

poorly characterized, but it has been estimated that 5 to 10 minutes of exposure to 

20,000 ppm is most likely fatal (24).  The pathology in cases of lethal benzene 

exposures may be described by asphyxiation, respiratory arrest, central nervous 

system depression, suspected cardiac collapse, cyanosis, hemolysis, and congestion or 

hemorrhage of organs (25-28). 

 

1.2.2 Respiratory Toxicity 

Several adverse respiratory effects have been reported in humans after acute 

exposures to benzene vapors between 30 and 300 ppm for a period of several days or 

weeks in relatively higher exposures, or as long as a year for relatively lower 

exposures.  These effects include mucous membrane irritation, dyspnea, nasal 
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irritation, and sore throat (25-30).  In extremely high exposures that resulted in 

fatalities, pulmonary edema, acute granular tracheitis, laryngitis, bronchitis, and 

massive hemorrhaging have been observed (25-27).  

 

1.2.3 Dermal Toxicity 

Skin irritation has been noted at airborne occupational exposures of >60 ppm for up 

to 3 weeks as well as with extremely high acute exposures (25, 29). 

 

1.2.4 Neurological Toxcity 

At acute exposure levels between 300 and 3,000 ppm, neurological effects have been 

observed such as drowsiness, dizziness, headache, vertigo, tremor, delirium, and loss 

of consciousness (29, 31-33).  There is some evidence of neurological toxicity from 

excessive chronic exposures (~200 ppm) in the form of global atrophy of lower 

extremities and distal neuropathy of upper extremities, though this is based on a 

limited number of cases and a crude estimation of exposure (34). 

 

1.2.5 Reproductive Toxicity 

There has been some suggestion that benzene exposure may lead to dysmenorrheal, 

disturbances in the menstrual cycle, and spontaneous abortion.  Unfortunately, the 

research related to these possible effects does not have accurate exposure 

measurements and is plagued by confounding factors such as mixed chemical 

exposures (35-37). 
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1.2.6 Hematological Toxicity 

Hematological effects from acute exposures have not been well established, but there 

is some evidence that indicates leukopenia, anemia, and thrombocytopenia may occur 

after more than 2 days of occupational exposure to more than 60 ppm benzene in a 

small portion of workers (29).  Chronic exposures to benzene in excess of 

occupational regulatory levels (~ 10 ppm) for many years may result in pancytopenia, 

the reduction in the number of all three major types of blood cells: erythrocytes (red 

blood cells), thrombocytes (platelets), and leukocytes (white blood cells).  

Additionally, aplastic anemia may result, a more severe condition wherein the bone 

marrow ceases to function and the stem cells never reach maturity.  Some research 

indicates that aplastic anemia may be a precursor to myelogenous leukemia (38-49).   

 

There are several studies clearly indicating that high level chronic exposure is 

associated with hematological abnormalities.  Askoy et al. 1971, 1972 found various 

increases in hematological abnormalities (leukopenia, thrombocytopenia, 

eosinophilia, pancytopenia, and hypoplastic, acellular, hyperplastic, or normoblastic 

bone marrow) with exposures estimated to be between 15 to >200 ppm (50-51).  

Dosemeci et al. 1996 found similar abnormalities when assessing rubber 

manufacturing workers with more accurately defined exposure estimates ranging 

from 5 to >40 ppm (52).  At lower levels of chronic exposure (0.01 – 1.4 ppm), 

evidence indicates chronic benzene exposure does not produce hematological toxicity 

(53-55). 
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1.3 Benzene as a Carcinogen 

As previously mentioned, benzene has been a suspected leukemogen, particularly the 

myeloid cell type, since the late 1920’s, though the causal association between 

benzene and leukemia had not been confirmed until the 1970’s.  The carcinogenic 

nature of benzene, in terms of the specific mechanism of action has not been clearly 

established.  An examination of benzene metabolism does provide some insight, 

however, for potential mechanisms by which the metabolites of benzene may function 

as carcinogens. 

 

1.3.1 Benzene Metabolism 

The metabolism of benzene in humans has been established primarily from studies 

using inhalation exposures. Benzene is excreted both unchanged through the lungs 

and as metabolites (as well as some unmetabolized benzene) in the urine. Metabolites 

are produced in the liver and carried to the bone marrow (though additional 

metabolism may occur in the marrow itself) where the greatest potential for benzene 

related toxicity exists.  As illustrated in Figure 1, benzene metabolism is driven by 

cytochrome P-450 2E1 (CYP2E1) catalyzed oxidation to form benzene oxide (56-57). 

Several pathways are involved in the metabolism of benzene oxide, the predominant 

pathway being the nonenzymatic rearrangement to form phenol, the initial product of 

benzene metabolism of major importance regarding benzene toxicity (58-59). 

CYP2E1 also catalyzes the oxidation of phenol to catechol or hydroquinone, which 

are oxidized via myeloperoxidase (MPO) to the reactive metabolites 1,2- and 1,4-

benzoquinone, respectively and the reverse reaction (reduction of 1,2- and 1,4-
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benzoquinone to catechol and hydroquinone, respectively) is catalyzed by NAD(P)H 

quinone oxidoreductase (NQ01). Both catechol and hydroquinone may be converted 

to the reactive metabolite 1,2,4-benzenetriol, again, by CYP2E1 catalysis. 1,2,4-

benzenetriol is potentially the most toxic metabolite as a result of having a third 

reactive hydroxyl group (60). 

 

However, as a minor pathway, benzene oxide may also undergo epoxide hydrolase-

catalyzed conversion to benzene dihydrodiol and subsequent dihydrodiol 

dehydrogenase-catalyzed conversion to catechol (60-62). Each of the phenolic 

metabolites of benzene (phenol, catechol, hydroquinone, and 1,2,4-benzenetriol) can 

undergo sulfonic or glucuronic conjugation, the conjugates of phenol and 

hydroquinone being the major urinary metabolites of benzene (60, 63-65). Other 

minor metabolic pathways for benzene oxide that produce potentially less toxic 

metabolites include the reaction with glutathione (GSH) to form S-phenylmercapturic 

acid, and the iron catalyzed ring-opening conversion to trans,trans-muconic acid, 

possibly through the reactive trans,transmuconaldehyde intermediate (60, 66-75). 
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Figure 1: Benzene metabolic pathways. 

 

From the ATSDR Toxicological Profile on Benzene; originally adapted from Nebert et al. 2002 and 
Ross 2000 (11, 60, 67). 
 
ADH = alcohol dehydrogenase; ALDH = aldehyde dehydrogenase; CYP2E1 = cytochrome P-450 2E1; 
DHDD = dihydrodiol dehydrogenase; EH = epoxide hydrolase; GSH = glutathione; MPO = 
myeloperoxidase; NQ01 = NAD(P)H:quinone oxidoreductase 
 

1.3.2 Mechanism of Action 

Several animal studies have found compelling evidence that the genotoxicity 

exhibited in mice after benzene exposure is directly attributed to the metabolites of 

benzene rather than benzene itself.  Valentine et al. 1996a, 1996b used transgenic 

knockout mice for the hepatic CYP2E1 gene, which prevents these mice from 

metabolizing benzene in the liver.  After both transgenic mice and wild-type mice 
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were exposed to 200 ppm of benzene for 6 hours a day for 5 days, the genotoxicity 

observed in the wild-type mice was notably absent in the transgenic mice (76-77).  

Similar results have been found in other studies where Cytochrome P-450 enzyme 

inhibitors were used on wild type mice to inhibit benzene metabolism, which 

effectively attenuated benzene induced genotoxicity (78-81). 

 

Several investigations suggest that the covalent binding of benzene metabolites to 

cellular macromolecules is related to benzene's mechanism of toxicity, specifically 

the formation of adducts with nucleic acids, but also with various proteins (82-90). 

The reactive metabolites that exhibit these binding properties and have been proposed 

as agents of benzene hematotoxic and leukemogenic effects include benzene oxide, 

reactive products of the phenol pathway (catechol, hydroquinone, 1,2,4-benzenetriol, 

and 1,4-benzoquinone).  Smith 1996a, 1996b noted that the phenolic metabolites can 

also be metabolized by bone marrow peroxidases, such as myeloperoxidase, to highly 

reactive semiquinone radicals and quinones that stimulate the production of reactive 

oxygen species (91-92).  All of these reactive metabolites are capable of damaging 

nuclear proteins and enzymes such as tubulin, histone proteins, topoisomerase II, 

other DNA associated proteins, as well as DNA itself in the form of strand breakage, 

mitotic recombination, chromosome translocations, and aneuploidy. Damage to stem 

or early progenitor cells could potentially be expressed as hematopoietic and 

leukemogenic effects (82-97). 
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As benzene toxicity is thought to be driven by metabolism, it is important to note that 

the available data collected on metabolic pathways is primarily garnered from animal 

studies.  This being the case, it is imperative to examine interspecies differences in 

the metabolism of benzene.  Firstly, species differences exist in absorption and 

retention of benzene. It has been observed that following 6-hour exposures to 

concentrations of 7–10 ppm of benzene vapors, mice retain 20% of the inhaled 

benzene, whereas rats and monkeys retain only 3–4% (98-99).  Secondly, the rate of 

metabolism differs among various species.  Mice have a greater overall capacity to 

metabolize benzene, compared to rats.  It has been shown that an inhalation exposure 

to 925 ppm results in an internal dose of 152 mg/kg in mice, only 15% of which was 

excreted as unmetabolized benzene compared to an internal dose of 116 mg/kg in 

rats, approximately 50% of which was excreted unchanged (98, 100).  As it is 

generally thought that humans more closely resemble mouse metabolic profiles 

compared to rats, a more conservative metabolic rate is used to estimate human 

metabolite production.  As well, the more conservative absorption rate is used in the 

development of the inhalation unit risk, with the assumption that humans absorb and 

retain 50% of inhaled exposures (48). 

 

1.4 Environmental Benzene Exposure 

The USEPA Toxic Release Inventory (TRI) records indicates that 333,089 pounds of 

benzene were released into the environment in the State of Florida in the year 2005 

(101).  Of these emissions, 115 pounds were recorded as releases into surface water, 

and there was no amount of direct release into the soil reported.  With the exception 
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of potential point source contamination of water and soil from accidental spillage that 

results in extremely high levels of benzene in those media, environmental airborne 

benzene represents the greatest potential for exposure to the general public.   

 

Benzene is released into the atmosphere from both natural and industrial sources.  

Natural sources include crude oil seeps, forest fires, and plant volatiles (102-103). 

Major anthropogenic sources of benzene include automobile exhaust, automobile 

refueling operations, and industrial emissions. It has been estimated that 

environmental benzene emissions are highest in coke oven blast furnaces. However, 

other sources that significantly contribute to emissions of benzene include 

automobiles, petrochemical industries, waste water treatment plants, and petroleum 

industries.  Personal exposures include fueling passenger automobiles and cigarette 

smoke.  Cigarette smoke is the most important personal exposure in moderate to 

heavy long-term smokers as it represents a persistent chronic exposure and can 

contribute to indoor air pollution to the extent that indoor levels may become 

significantly higher than ambient levels.  Smokers are known to have measurably 

higher levels of benzene in exhaled breath than non-smokers (104).  The amount of 

benzene measured in mainstream smoke ranges from 5.9 to 73 µg/cigarette. Larger 

amounts of benzene have been found in side-stream smoke, ranging from 345 to 653 

µg/cigarette (105).  Vaporized benzene in the atmosphere may persist for a matter of 

hours to approximately a week, depending on the concentration of hydroxyl 

molecules present, which are the primary reactants involved in reducing airborne 

benzene concentrations (106-107). 
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1.5 Research Objectives 

It is evident that the majority environmental emissions of benzene are airborne, and 

consequently, the greatest opportunity for exposure to the general public is through 

the inhalation.  It is also generally accepted that the health risk of greatest concern 

from low level benzene exposures is cancer, specifically AML.  As a result, the 

primary objectives of this risk characterization deal directly with the cancer risks that 

may potentially exist from ambient airborne concentrations of benzene. 

 

Specifically, the objectives of the current research are as follows: 

1.  To characterize the ambient airborne benzene exposures in the State of Florida by 

analyzing data from air sample measurements collected at air toxics monitoring sites 

in the most populous counties from the years 2003 to 2006. 

2.  To characterize the cancer risk that may exist using the USEPA Risk Assessment 

for Carcinogens methodology from the measured benzene concentrations in this 

study. 

3.  To extrapolate the cumulative lifetime benzene exposure from the measured 

benzene exposures in this study. 

4.  To perform a comparative analysis between epidemiological studies evaluating 

cancer risk from cumulative lifetime benzene exposures to the cumulative lifetime 

exposures as indicated by the measured benzene exposures in this study. 

5.  To draw conclusions as to the health risk presented by the ambient airborne 

benzene exposures measured in this study. 
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The hypotheses to be tested in this research are the following: 

1.  A regulatory risk analysis based on measured benzene concentrations will result in 

risk values in excess of the 1 x 10-6 acceptable risk level promulgated by the FLDEP; 

2.  Analysis of current epidemiological research will indicate that a threshold for 

benzene induced leukemogenesis is evident, and; 

3.  Cumulative exposures extrapolated from measured airborne benzene 

concentrations will be less than the evident threshold for benzene induced 

leukemogenesis. 
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Chapter 2.0: Research Methods 
 
2.1 Monitor Site Descriptions 

In the State of Florida, six counties have active air toxics monitoring programs.  

Within each county, there are varying numbers of monitors, in various locations in 

terms of their proximity to benzene emission sources.  Figures 2-7 represent the 

locations of each monitor within each county, and their proximity to known benzene 

emission sources, with the largest contributors of benzene emissions labeled.  To 

provide a sense of scale, and the potential influence of these emission sources on the 

monitors, a two mile radius encircles the monitor sites.  In Broward County (Figure 2) 

the four active monitors fall primarily in Commercial and Residential areas, with all 

monitors being located within two miles of known benzene emission sources.  Duval 

County (Figure 3) possesses more air toxic monitoring stations than any other county 

in the State of Florida, and in addition to the Residential and Commercial monitor 

categories, Duval County employs 23 monitors located near major highways and 

roadways which may be heavily influenced by fugitive mobile benzene emissions.  

Hillsborough County (Figure 4) has 3 active monitors in Commercial, Residential, 

and Rural areas.  Two monitors in Dade County (Figure 5) are located in Rural and 

Commercial areas, respectively.  Orange County (Figure 6) has a single active 

monitoring station located in a Commercial area, with close proximity to major 

roadways.  Pinellas County (Figure 7) has 3 active monitor locations in Residential 

areas, though it should be noted at least two of the monitors are within a two mile 
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proximity of known benzene emission sites, Site #2 located within two miles of the 

largest benzene emission site for that county. 

Figure 2: Benzene monitor locations and relevant benzene emission sources for 
Broward County. 
 

 

Benzene monitor locations within Broward County, Florida.  Each site is encircled by 
a 2 mile radius.  Blue marks indicate known benzene emission sites; the highest 
emission sources for this county are labeled (108). 
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Figure 3: Benzene monitor locations and relevant benzene emission sources for 
Duval County. 
 

 

Benzene monitor locations within Duval County, Florida.  Each site is encircled by a 
2 mile radius.  Blue marks indicate known benzene emission sites; the highest 
emission sources for this county are labeled (108). 
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Figure 4: Benzene monitor locations and relevant benzene emission sources for 
Hillsborough County. 
 

  

Benzene monitor locations within Hillsborough County, Florida.  Each site is 
encircled by a 2 mile radius.  Blue marks indicate known benzene emission sites; the 
highest emission sources for this county are labeled (108). 
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Figure 5: Benzene monitor locations and relevant benzene emission sources for 
Dade County. 
 

 

Benzene monitor locations within Dade County, Florida.  Each site is encircled by a 2 
mile radius.  Blue marks indicate known benzene emission sites; the highest emission 
sources for this county are labeled (108). 
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Figure 6: Benzene monitor locations and relevant benzene emission sources for 
Orange County. 
 

 

Benzene monitor locations within Orange County, Florida.  Each site is encircled by a 
2 mile radius.  Blue marks indicate known benzene emission sites; the highest 
emission sources for this county are labeled (108). 
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Figure 7: Benzene monitor locations and relevant benzene emission sources for 
Pinellas County. 
 

 

Benzene monitor locations within Pinellas County, Florida.  Each site is encircled by 
a 2 mile radius.  Blue marks indicate known benzene emission sites; the highest 
emission sources for this county are labeled (108). 
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2.2 Data Collection 

Six Florida Counties (Duval, Pinellas, Miami-Dade, Hillsborough, Orange, and 

Broward) currently monitor and report air toxics levels to the United States 

Environmental Protection Agency (USEPA).  From the USEPA air toxics database, 

all reported monitor levels were queried for Parameter 45201 Benzene in the State of 

Florida for years 2003 – 2006 (108).  The final dataset contained all reported airborne 

benzene measurements from 23 individual monitoring sites during this time interval. 

 

The sample collection method for Broward, Hillsborough, Miami-Dade, Orange, and 

Pinellas counties uses the EPA method code 176 (109).  This method uses 6 liter, sub-

ambient canisters for collection over either 12 or 24 hour periods.  Chemical species 

are quantified by Entech Proconcentrator Gas Chromatography/Mass Spectroscopy.  

Duval County utilizes EPA method code 101 (109).  This method utilizes sub-

ambient pressure canisters to collect samples over either 3, 4, 8, 12, or 24 hours (all 

time periods were used for sampling beginning at various times throughout day or 

night time hours).  Chemical Species are quantified by Multi-Detector Gas 

Chromatography.  Both methods have the same calculated method detection limit 

(MDL). 

 

2.3 Assigning Values to Measurements Below the Method Detection Limit 

In assessing low level environmental exposures, quantifying concentrations can be 

limited by the physical capabilities of the equipment being used to measure the 

airborne concentrations of a substance.  When a measured value is below the method 
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detection limit used in an exposure assessment, it is not considered a reliable value.  

For these measurements, values are assigned based on assumptions made as to the 

type of exposure being analyzed.  For instance, as benzene is ubiquitous throughout 

the atmosphere, it would not be a reasonable assumption that values under the MDL 

would indicate a level of zero.  Alternative methods have been proposed by Hornung 

and Reed 1990 (128).  The most conservative method of assigning values is to apply 

the actual MDL to values that fall below the limit.  This method will result in the 

highest estimated mean exposure levels, and may significantly overestimate the actual 

exposure in data for which there are many values below the MDL.  Another proposed 

methodology that is less conservative than using the actual MDL is to divide the 

MDL by the square root of 2 (128).  Hornung and Reed 1990 compared this method 

with known censored datasets and found the comparison to maximum likelihood 

estimates to be a highly accurate method of assigning values non-skewed data (128).  

Hornung and Reed 1990 also found this methodology to be more appropriate than the 

USEPA method of assigning values below the MDL as the MDL divided by 2 (128).  

Dividing the MDL by 2 results in the least conservative estimation of mean values, 

and might be criticized by some as resulting in an underestimation of mean exposure.  

As a principle goal of the current research is to analyze the exposure data with 

USEPA risk assessment methodology, it of great interest to calculate means that are 

consistent with USEPA methods.  However, in order to explore the effects of this data 

treatment on estimated mean exposures, the alternative methods were also employed, 

and the results were compared using the students t-test to assess if statistically 

significant differences in estimated mean exposures have been produced as a result. 
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Assigning values to measurements that are below the MDL may significantly affect 

the calculated means if a large portion of the data set consists of values that fall below 

the MDL.  The standard procedure for assigning values below the MDL, as indicated 

by the USEPA Guidelines for Carcinogen Risk Assessment, is to divide the MDL by 

2 (110).  This was the primary method used for calculating risk probabilities in the 

current study.  In order to assess the impact of values falling below the MDL on the 

calculation of risk probabilities, two additional methods of assigning values to 

measurements under the MDL are considered.  The Upper Confidence Limit of the 

Arithmetic Mean (UCL-AM) is also calculated by assigning values equal to the 

MDL, and assigning values equal to the MDL divided by the square root of 2, when 

recorded values are below the MDL.  The students t-test has been used to determine 

whether or not the different methodologies used in assigning values to measurements 

under the MDL have a statistically significant impact on the calculation of UCL-

AMs. 

 

2.4 USEPA Risk Analysis 

A risk analysis of the data was performed using the USEPA Risk Assessment for 

Superfund methodology (110).  Risk estimates were produced for the probability of 

developing cancer (AML) as a result of the measured benzene concentrations.  The 

exposure concentrations used in the calculation of risk and the risk probabilities were 

derived using the USEPA software ProUCL version 4.  The ProUCL program 

calculates the 95% UCL-AM for normal, lognormal, gamma, and nonparametrically 
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(non-normal) distributed concentrations of chemicals in air and recommends the most 

appropriate UCL-AM for use depending on the distribution of the data.  This analysis 

was performed for the data retrieved for each individual site. 

 

Risk probabilities were then calculated from all previously described UCL-AMs for 

all sites.  These risk probabilities were calculated by multiplying the UCL-AM by the 

Inhalation Unit Risk (IUR) as prescribed in the USEPA Guidelines for carcinogen 

risk assessment (110).  The IUR used for benzene, 7.8 x 10-6, is consistent with both 

the USEPA Integrated Risk Information System (IRIS) and the Florida Department of 

Environmental Protection risk assessment methodology (49, 111). 

 

2.5 Comparative Analysis 

In order to conduct a comparative analysis between the benzene exposures found in 

the current research and those found in epidemiological studies that have assessed the 

relationship between cumulative lifetime benzene exposures (expressed as ppm-

years) and cancer, monitored levels in the current data set have been extrapolated to 

reflect cumulative lifetime exposures in ppm-years.   This was performed using 

USEPA methodology presented in the Region/ORD Workshop on Inhalation Risk 

Assessment: A Superfund Focus (112).  Using the UCL-AMs for calculating the risk 

probability associated with each monitoring site, the cumulative exposure was 

extrapolated into ppm-years with the following conversion factors: 20 m3/10 m3 x 7 

days/5 days x 70 years/40 years = 4.9.  This method of conversion accounts for both 

the decreased inhalation rate associated with non-occupational airborne exposures as 
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well as the increased exposure duration of 7 days a week for 70 years compared to 

occupational exposures of 5 days a week over a 40 year working lifetime.  The ORD 

Workshop on Inhalation Risk Assessment indicates that the conversion factor 

affecting the difference in inhalation rates adequately compensates for the difference 

in daily exposure times (e.g. 24 hours of environmental exposure versus 8 hours of 

occupational exposure) and that an additional conversion factor for this difference is 

unnecessary (112). 

 

A literature review using the PubMed/Medline database has been conducted to gather 

all published, peer reviewed scientific literature regarding airborne benzene exposure 

and cancer outcomes that contain comparisons of discreet ranges of lifetime exposure.  

In comparing the cumulative lifetime benzene exposures derived from the current 

research with cumulative benzene exposures from occupational cohorts, a weight of 

evidence approach using the criteria for causal analysis has been made to determine if 

there is potentially a threshold below which leukemogenesis does not occur.  More 

specifically, this comparative analysis determined if there is research to indicate there 

is a potential association between levels of exposure measured in this dissertation 

with leukemogenesis by assessing the levels of cumulative lifetime exposures found 

in occupational cohorts that are associated with leukemogenesis. 
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Chapter 3.0: Results 
 
3.1 Descriptive Statistics 

Tables 1 – 6 contain the summary statistics of the airborne benzene measurements 

collected at each sampling site, by county.  The number of samples, minimum 

measured concentrations, maximum measured concentrations, mean concentrations, 

median concentrations, and the standard deviation are reported for all sites for 

samples collected between January 2003 and December 2006.  As three different 

methods were used to assign values to measurements below the MDL, summary 

statistics were produced for each method for those sites that had measurements below 

the MDL, and this is reflected in the following tables.  For sites with no 

measurements below the MDL, results from using any value assigning methodology 

could not be reported. 
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Table 1: Summary Statistics for airborne benzene samples collected between 
January 2003 and December 2006 for all Broward County sampling sites.  All 
concentrations are µg/m3. 
 

 Site 
1002 

Site 
2004 

Site 
3002 

Site 
5005 

     
Number of Samples 218 181 186 224 
Number Below MDL 13 21 6 29 
     
MDLa     
Minimum 0.29 0.2 0.2 0.22 
Maximum 3.03 2.72 20.19 2.27 
Mean 0.831 0.881 1.711 0.729 
Median 0.73 0.8 0.93 0.64 
SDd 0.399 0.463 3.256 0.359 
     
MDL/2b     
Minimum 0.19 0.1 0.1 0.12 
Maximum 3.03 2.72 20.19 2.27 
Mean 0.817 0.856 1.705 0.7 
Median 0.73 0.8 0.93 0.64 
SDd 0.415 0.491 3.259 0.386 
     
MDL/√2c     
Minimum 0.27 0.14 0.14 0.17 
Maximum 3.03 2.72 20.19 2.27 
Mean 0.823 0.866 1.707 0.712 
Median 0.73 0.8 0.93 0.64 
SDd 0.408 0.478 3.258 0.373 

  
 a Values below the MDL were assigned the value of the MDL. 
 b Values below the MDL were assigned the value of the MDL/2. 
 c Values below the MDL were assigned the value of the MDL/√2 
 d Standard Deviation 
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Table 2: Summary Statistics for airborne benzene samples collected between 
January 2003 and December 2006 for all Dade County sampling sites.  All 
concentrations are µg/m3. 
 

 Site 
29 

Site 
32 

   
Number of Samples 119 80 
Number Below MDL 3 1 
   
MDL   
Minimum 0.16 0.35 
Maximum 2.84 3.1 
Mean 0.803 1.221 
Median 0.67 1.15 
SD 0.523 0.569 
   
MDL/2   
Minimum 0.16 0.19 
Maximum 2.84 3.1 
Mean 0.796 1.219 
Median 0.67 1.15 
SD 0.528 0.573 
   
MDL/√2   
Minimum 0.16 0.28 
Maximum 2.84 3.1 
Mean 0.799 1.22 
Median 0.67 1.15 
SD 0.525 0.571 

  

 a Values below the MDL were assigned the value of the MDL. 
 b Values below the MDL were assigned the value of the MDL/2. 
 c Values below the MDL were assigned the value of the MDL/√2 
 d Standard Deviation 
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Table 3: Summary Statistics for airborne benzene samples collected between 
January 2003 and December 2006 for all Duval County sampling sites.  All 
concentrations are µg/m3. 
 

 Site 
32 

Site 
77 

Site 
80 

Site 
84 

Site 
100 

      
Number of 
Samples 

96 54 48 89 48 

Number 
Below 
MDL 

0 0 0 0 0 

      
Minimum 1.41 1.09 1.41 1.05 0.05 
Maximum 24.79 24.09 34.50 28.62 14.95 
Mean 6.09 4.28 6.18 7.68 3.62 
Median 4.52 3.37 4.70 6.87 3.42 
SDa 4.34 3.47 5.33 4.79 2.59 

 

 Site 
101 

Site 
102 

Site 
103 

Site 
104 

Site 
105 

      
Number 
of 
Samples 

240 504 210 430 25 

Number 
Below 
MDL 

0 0 0 0 0 

      
Minimum 0.54 0.38 0.32 0.45 4.06 
Maximum 116.10 134.40 46.67 23.96 13.13 
Mean 8.23 9.01 5.53 3.93 7.76 
Median 5.20 5.51 4.28 2.72 7.25 
SDa 10.48 12.59 4.82 3.52 2.55 

 

a Standard Deviation 
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Table 4: Summary Statistics for airborne benzene samples collected between 
January 2003 and December 2006 for all Hillsborough County sampling sites.  
All concentrations are µg/m3. 
 

 Site 
1065 

Site 
1075 

Site 
3002 

    
Number of Samples 218 57 177 
Number Below MDL 0 0 0 
    
Minimum 0.19 0.38 0.16 
Maximum 2.3 2.59 1.53 
Mean 0.654 0.886 0.551 
Median 0.58 0.77 0.48 
SDa 0.298 0.452 0.263 

  

 aStandard Deviation 
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Table 5: Summary Statistics for airborne benzene samples collected between 
January 2003 and December 2006 for all Orange County sampling sites.  All 
concentrations are µg/m3. 
 

 Site 
2002 

  
Number of Samples 122 
Number Below MDL 3 
  
MDLa  
Minimum 0.35 
Maximum 1.69 
Mean 0.734 
Median 0.67 
SDd 0.291 
  
MDL/2b  
Minimum 0.32 
Maximum 1.69 
Mean 0.726 
Median 0.67 
SDd 0.298 
  
MDL/√2c  
Minimum 0.35 
Maximum 1.69 
Mean 0.728 
Median 0.67 
SDd 0.296 

  

 a Values below the MDL were assigned the value of the MDL. 
 b Values below the MDL were assigned the value of the MDL/2. 
 c Values below the MDL were assigned the value of the MDL/√2 
 d Standard Deviation 
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Table 6: Summary Statistics for airborne benzene samples collected between 
January 2003 and December 2006 for all Pinellas County sampling sites.  All 
concentrations are µg/m3. 
 

 Site 
4 

Site 
18 

Site 
26 

    
Number of Samples 59 240 147 
Number Below MDL 0 0 0 
    
Minimum 0.35 0.16 0.26 
Maximum 1.92 2.78 4.66 
Mean 0.853 0.826 1.039 
Median 0.73 0.73 0.93 
SDa 0.378 0.444 0.629 

  

 a Standard Deviation 
 
3.2 Comparative Statistics for the Different Methods of Assigning Values to 
Measurements Below the MDL 
 
As previously stated, the method used by the USEPA to assign values to 

measurements under the MDL is to divide the MDL by 2.  Other, more conservative 

methods, are often used to assign these values including assigning the value of MDL 

or assigning the value of the MDL divided by the square root of 2.  In order to 

determine if the differences in value assignment methodologies have a statistically 

significant impact on the derivation of the mean (and consequently the UCL-AM of 

the mean), a two-tailed, paired t-test was conducted to compare the data that resulted 

from using the USEPA methodology (MDL/2) with the data that resulted from using 

both the actual MDL and the MDL/√2.  A statistically significant difference was 

considered to be evident at a p-value less than 0.05.  These results are summarized for 

each site that contained values below the MDL, by county, in Tables 7 – 12. 
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Table 7: The results of paired t-tests for each site in Broward County.  A p-value 
<0.05 indicates a statistically significant difference in mean concentration values 
due to assigning values to measurements under the MDL with an alternative 
methodology than that used by the USEPA (MDL/2). 
 

 MDL/√2 
(p-value) 

MDL 
(p-value) 

Site 1002 <0.001* <0.001* 

Site 2004 <0.001* <0.001* 

Site 3002 0.019* 0.018* 

Site 5005 <0.001* <0.001* 

 * Indicates a statistically significant difference in the derivation of means by 
 using the alternative methodology of assigning values below the MDL 
 compared to the method used by the USEPA (MDL/2). 
 
Table 8: The results of paired t-tests for each site in Dade County.  A p-value 
<0.05 indicates a statistically significant difference in mean concentration values 
due to assigning values to measurements under the MDL with an alternative 
methodology than that used by the USEPA (MDL/2). 
 

 MDL/√2 
(p-value) 

MDL 
(p-value) 

Site 29 0.098 0.101 

Site 32 0.320 0.320 

 
Table 9: The results of paired t-tests for each site in Orange County.  A p-value 
<0.05 indicates a statistically significant difference in mean concentration values 
due to assigning values to measurements under the MDL with an alternative 
methodology than that used by the USEPA (MDL/2). 
 

 MDL/√2 
(p-value) 

MDL 
(p-value) 

Site 2002 0.0833 0.0833 

 
The paired t-tests indicate that only the data collected in Broward County (sites 1002, 

2004, 3002, 5005) are affected at a statistically significant level by using alternative 

methods of assigning values to measurements under the MDL in the exposure 

assessment.  Consequently, only these sites will be presented with results calculated 

from alternative methods of assigning values below the MDL in subsequent analyses. 
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3.3 The Calculation of the 95% UCL-AMs using ProUCL 

The 95% UCL-AMs for measured airborne benzene concentrations were calculated 

using ProUCL software.  These values, which are used in the subsequent risk 

analysis, are summarized by site for each county in Tables 13 – 18.  In Figures 2-7, 

the 95% UCL-AMs are charted for a side by side comparison of the relative exposure 

levels measured within each county.  Figure 8 provides a side by side comparison of 

all the 95% UCL-AMs for all monitoring sites in the State of Florida.  As three 

different methods were used to assign values to measurements below the Method 

Detection Limit (MDL), 95% UCL-AMs were produced for each method for relevant 

sites, and this is reflected in the following tables and figures. 

Table 10: The 95% UCL-AMs for all measured airborne benzene concentrations 
in Broward County between 2003 and 2006 by Site.  All concentrations are 
µg/m3. 
 

 Site 
1002 

Site 
2004 

Site 
3002 

Site 
5005 

Concentration 
(MDL)a 

0.88 0.94 2.75 0.77 

Concentration 
(MDL/√2)b 

0.87 0.93 2.75 0.75 

Concentration 
(MDL/2)c 

0.86 0.92 2.75 0.74 

 

a Values below the MDL were assigned the value of the MDL. 
b Values below the MDL were assigned the value of the MDL/√2. 
c Values below the MDL were assigned the value of the MDL/2. 
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Figure 8: Summary of the 95% UCL-AMs for Broward County monitoring sites 
for data collected from the years 2003 to 2006.  Concentrations are expressed in 
µg/m3. 
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Table 11: The 95% UCL-AMs for all measured airborne benzene concentrations 
in Dade County between 2003 and 2006 by Site.  All concentrations are µg/m3. 
 
 Site 29 Site 32 

Concentration 1.01 1.33 
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Figure 9: Summary of the UCL-AMs for Dade County monitoring sites for data 
collected from the years 2003 to 2006.  Concentrations are expressed in µg/m3. 
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Table 12: The 95% UCL-AMs for all measured airborne benzene concentrations 
in Duval County between 2003 and 2006 by Site.  All concentrations are µg/m3. 
 

 Site 
32 

Site 
77 

Site 
80 

Site 
84 

Site 
100 

Concentration 6.72 4.95 7.13 8.57 4.32 

 
 Site 

101 
Site 
102 

Site 
103 

Site 
104 

Site 
105 

Concentration 11.18 11.45 5.94 4.67 8.63 
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Figure 10: Summary of the UCL-AMs for Duval County monitoring sites for 
data collected from the years 2003 to 2006.  Concentrations are expressed in 
µg/m3.
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Table 13: The 95% UCL-AMs for all measured airborne benzene concentrations 
in Hillsborough County between 2003 and 2006 by Site.  All concentrations are 
µg/m3. 
 

 Site 1065 Site 
1075 

Site 
3002 

Concentration 0.687 0.982 0.584 
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Figure 11: Summary of the UCL-AMs for Hillsborough County monitoring sites 
for data collected from the years 2003 to 2006.  Concentrations are expressed in 
µg/m3. 
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Table 14: The 95% UCL-AMs for all measured airborne benzene concentrations 
in Orange County between 2003 and 2006 by Site.  All concentrations are µg/m3. 
 

 Site 2002 

Concentration 0.771 
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Figure 12: Summary of the UCL-AMs for the Orange County monitoring site 
for data collected from the years 2003 to 2006.  Concentrations are expressed in 
µg/m3. 
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Table 15: The 95% UCL-AMs for all measured airborne benzene concentrations 
in Pinellas County between 2003 and 2006 by Site.  All concentrations are µg/m3. 
 
 Site 4 Site 18 Site 26 

Concentration 0.938 0.885 1.265 
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Figure 13: Summary of the UCL-AMs for Pinellas County monitoring sites for 
data collected from the years 2003 to 2006.  Concentrations are expressed in 
µg/m3. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pinellas 4 Pinellas 18 Pinellas 26
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 40 

Figure 14: Summary of the UCL-AMs for all sites for data collected from the 
years 2003 to 2006.  Concentrations are expressed in µg/m3. 
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3.4 Risk Analysis 

The risk analysis outcomes indicate that every monitoring site in the State of Florida 

measured benzene concentrations (based on the UCL-AMs) that are consistent with a 

lifetime (70 year) estimated cancer risk probability of greater than 1 x 10-6.  Risk 

values ranged from 4.56 x 10-6 to 8.93 x 10-5 using USEPA methodology for data 

treatment and analysis.  Risk estimates are summarized for each site, by county, in 

tables 19 – 24.  In Figures 9-14, risk estimates have been charted side by side, using 

the FLDEP regulatory limit of 1 x 10-6 as the baseline for reference.  Figure 15 

provides a side by side comparison for the risk estimates of all counties in the State of 

Florida, using the FLDEP regulatory limit of 1 x 10-6 as the baseline for reference.  

Risk estimates were also calculated for the monitoring data using both alternative 
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methods of assigning values to measurements below the MDL for relevant sites, and 

this is reflected in the following tables and figures. 

Table 16: Lifetime cancer risk probability estimates for Broward County, by 
monitoring site, based on the measured concentrations of benzene from the years 
2003 to 2006. 
 

 Site 
1002 

Site 
2004 

Site 
3002 

Site 
5005 

Concentration 
(MDL)a 

6.83E-06 7.31E-06 2.15E-05 6.00E-06 

Concentration 
(MDL/√2)b 

6.77E-06 7.23E-06 2.14E-05 5.87E-06 

Concentration 
(MDL/2)c 

6.73E-06 7.19E-06 2.14E-05 5.80E-06 

 

a Values below the MDL were assigned the value of the MDL. 
b Values below the MDL were assigned the value of the MDL/√2. 
c Values below the MDL were assigned the value of the MDL/2. 
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Figure 15: Lifetime cancer risk probability estimates for Broward County, by 
monitoring site, based on the measured concentrations of benzene from the years 
2003 to 2006.  The baseline for this chart is 1 x 10-6, the FLDEP’s acceptable 
cancer risk. 
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Table 17: Lifetime cancer risk probability estimates for Dade County, by 
monitoring site, based on the measured concentrations of benzene from the years 
2003 to 2006. 
 

 Site 29 Site 32 

Concentration 7.85E-06 1.04E-05 
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Figure 16: Lifetime cancer risk probability estimates for Dade County, by 
monitoring site, based on the measured concentrations of benzene from the years 
2003 to 2006.  The baseline for this chart is 1 x 10-6, the FLDEP’s acceptable 
cancer risk. 
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Table 18: Lifetime cancer risk probability estimates for Duval County, by 
monitoring site, based on the measured concentrations of benzene from the years 
2003 to 2006.  
 

 
Site 
32 

Site 
77 

Site 
80 Site 84 

Site 
100 

Concentration 
5.24E-
05 

3.86E-
05 

5.56E-
05 

6.69E-
05 

3.37E-
05 

 

 
Site 
101 

Site 
102 Site 103 Site 104 

Site 
105 

Concentration 
8.72E-
05 

8.93E-
05 

4.63E-
05 

3.65E-
05 

6.73E-
05 
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Figure 17: Lifetime cancer risk probability estimates for Duval County, by 
monitoring site, based on the measured concentrations of benzene from the years 
2003 to 2006.  The baseline for this chart is 1 x 10-6, the FLDEP’s acceptable 
cancer risk. 
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Table 19: Lifetime cancer risk probability estimates for Hillsborough County, by 
monitoring site, based on the measured concentrations of benzene from the years 
2003 to 2006. 
 

 Site 1065 Site 1075 Site 3002 

Concentration 5.36E-06 7.66E-06 4.56E-06 
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Figure 18: Lifetime cancer risk probability estimates for Hillsborough County, 
by monitoring site, based on the measured concentrations of benzene from the 
years 2003 to 2006.  The baseline for this chart is 1 x 10-6, the FLDEP’s 
acceptable cancer risk. 
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Table 20: Lifetime cancer risk probability estimates for Orange County, by 
monitoring site, based on the measured concentrations of benzene from the years 
2003 to 2006. 
 

 Site 2002 

Concentration 6.01E-06 
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Figure 19: Lifetime cancer risk probability estimates for Orange County, by 
monitoring site, based on the measured concentrations of benzene from the years 
2003 to 2006.  The baseline for this chart is 1 x 10-6, the FLDEP’s acceptable 
cancer risk. 
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Table 21: Lifetime cancer risk probability estimates for Pinellas County, by 
monitoring site, based on the measured concentrations of benzene from the years 
2003 to 2006. 
 

 Site 4 Site 18 Site 26 

Concentration 7.32E-06 6.90E-06 9.87E-06 
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Figure 20: Lifetime cancer risk probability estimates for Pinellas County, by 
monitoring site, based on the measured concentrations of benzene from the years 
2003 to 2006.  The baseline for this chart is 1 x 10-6, the FLDEP’s acceptable 
cancer risk. 
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Figure 21: Lifetime cancer risk probability estimates for all counties, by 
monitoring site, based on the measured concentrations of benzene from the years 
2003 to 2006.  The baseline for this chart is 1 x 10-6, the FLDEP’s acceptable 
cancer risk. 
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3.5 Cumulative Lifetime Exposures in ppm-years 
 
In order to compare the collected exposure data to epidemiological studies involving 

occupational cumulative lifetime benzene exposures, the UCL-AM concentrations 

must be converted from µg/m3 to ppm, and then extrapolated into 70 year cumulative 

environmental lifetime exposures based on the ORD Workshop on Inhalation Risk 

Assessment methodology previously described.  Cumulative lifetime exposures to 

benzene ranged from 0.04 ppm-years to 0.70 ppm-years.  The extrapolated 

cumulative lifetime exposures for all sites, by county, are summarized in Tables 25 – 

30.  Figures 15 – 21 charts the side by side comparison of lifetime cumulative 

exposures for the monitoring sites within each county.  Figure 22 charts the side by 
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side comparison of lifetime cumulative exposures for all monitoring sites in the State 

of Florida.  Lifetime cumulative exposures were extrapolated for the monitoring data 

using both alternative methods of assigning values to measurements below the MDL 

for relevant sites, and this is reflected in the following tables. 

Table 22: Extrapolated 70 year lifetime cumulative exposures for Broward 
County by monitoring site.  All values are ppm-years. 
 

 Site 
1002 

Site 
2004 

Site 
3002 

Site 
5005 

Cumulative 
exposure (MDL)a 0.05 0.06 0.17 0.05 

Cumulative 
exposure (MDL/√2)b 0.05 0.06 0.17 0.05 

Cumulative 
exposure (MDL/2)c 0.05 0.06 0.17 0.05 

 

a Values below the MDL were assigned the value of the MDL. 
b Values below the MDL were assigned the value of the MDL/√2. 
c Values below the MDL were assigned the value of the MDL/2. 
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Figure 22: Extrapolated 70 year lifetime cumulative exposures for Broward 
County by monitoring site in ppm-years. 
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Table 23: Extrapolated 70 year lifetime cumulative exposures for Dade County 
by monitoring site.  All values are ppm-years. 
 

 Site 29 Site 32 

Cumulative exposure 0.06 0.08 
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Figure 23: Extrapolated 70 year lifetime cumulative exposures for Dade County 
by monitoring site in ppm-years. 
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Table 24: Extrapolated 70 year lifetime cumulative exposures for Duval County 
by monitoring site.  All values are ppm-years. 
 

 Site 
32 

Site 
77 

Site 
80 

Site 
84 

Site 
100 

Cumulative 
exposure 

0.41 0.30 0.44 0.53 0.26 

 
 

 Site 
101 

Site 
102 

Site 
103 

Site 
104 

Site 
105 

Cumulative 
exposure 

0.69 0.70 0.36 0.29 0.53 
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Figure 24: Extrapolated 70 year lifetime cumulative exposures for Duval County 
by monitoring site in ppm-years. 
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Table 25: Extrapolated 70 year lifetime cumulative exposures for Hillsborough 
County by monitoring site.  All values are ppm-years. 
 

 Site 1065 Site 1075 Site 3002 

Cumulative 
exposure 

0.04 0.06 0.04 
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Figure 25: Extrapolated 70 year lifetime cumulative exposures for Hillsborough 
County by monitoring site in ppm-years. 
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Table 26: Extrapolated 70 year lifetime cumulative exposures for Orange 
County by monitoring site.  All values are ppm-years. 
 

 Site 2002 

Cumulative exposure 0.05 
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Figure 26: Extrapolated 70 year lifetime cumulative exposures for Orange 
County by monitoring site in ppm-years. 
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Table 27: Extrapolated 70 year lifetime cumulative exposures for Pinellas 
County by monitoring site.  All values are ppm-years. 
 

 Site 4 Site 18 Site 26 

Cumulative exposure 0.06 0.05 0.08 
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Figure 27: Extrapolated 70 year lifetime cumulative exposures for Pinellas 
County by monitoring site in ppm-years. 
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Figure 28: Extrapolated 70 year lifetime cumulative exposures for all counties by 
monitoring site in ppm-years. 
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3.6 Comparative Risk Analysis with Occupational Cohorts 

A review of published literature examining the relationship between discreet ranges 

of occupational benzene exposure and leukemia is summarized in Table 31.  For all 

studies, the highest exposure category that did not result in a statistically significant 

association between benzene and leukemia was considered the No Observable 

Adverse Effect Level (NOAEL) for that study.  For all studies, the lowest exposure 

category that resulted in a statistically significant association with leukemia was 

considered the Lowest Observable Adverse Effect Level (LOAEL).  No studies were 

discovered that established a relationship between benzene and leukemia outcomes 

for cumulative exposures below 1 ppm-years. 
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Table 28: The No Observable Adverse Effect Levels (NOAEL) and the Lowest 
Observable Adverse Effect Levels (LOAEL) for all studies used in the 
comparative risk analysis. 
 

Study Measure of 
Association 

NOAEL LOAEL Evidence for 
association 
between 
leukemogenesis 
and cumulative 
exposures 
under 1 ppm-
years 

Swaen et 
al. 2005 

SMR 401.5 
ppm-
years 

N/Aa 
NO 

Seniori et 
al. 2003 

SMR 100-199 
ppm-
years 

>200 
ppm-
years 

NO 

Guenel et 
al. 2002 

OR >5.5 - 
<16.8 
ppm-
years 

>16.8 
ppm-
years 

NO 

Rushton et 
al. 1997 

OR >45 
ppm-
years 

N/Aa 
NO 

Wong et al. 
1995 

SMR 40-200 
ppm-
years 

200-400 
ppm-
years 

NO 

Collins et 
al. 2003 

SMR >6 
ppm-
years 

N/Aa 
NO 

Paxton 
1996 

SMR >5-50 
ppm-
years 

>50-500 
NO 

Glass et al. 
2006 

OR Not 
Reporte
d 

>8 ppm-
years NO 

Glass et al. 
2003 

OR >1-2 
ppm-
years 

>2-4 
ppm-
years 

NO 

Hayes et 
al. 1997 

RR <40 
ppm-
years  

40-99 
ppm-
years  

NO 

Rinsky et 
al. 1987 

SMR 40-200 
ppm-
years 

200-400 
ppm-
years 

NO 

Schnatter 
et al. 1996 

OR 20-
219.8 
ppm-
years 

N/Aa 

NO 
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Wong and 
Gerhard 
1995 

SMR 40-200 
ppm-
years 

200-400 
ppm-
years 

NO 

 

SMR = Standardized Mortality Ratio, OR = Odds Ration, RR = Risk Ratio 

aN/A indicates no association between cumulative lifetime benzene exposure and 
leukemia was found in this study. 
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Chapter 4.0: Discussion 
 
4.1 USEPA Risk Assessment for Benzene 

Using the USEPA Risk Assessment for Carcinogens methodology, the 70 year 

lifetime risk of developing cancer from the exposure levels measured in this study 

exceed the Florida DEP’s acceptable risk of 1 x 10-6 for all sites.  In order to 

determine what these results mean in terms of actual cancer outcomes that may result 

from this exposure, it is necessary to examine the nature of regulatory risk assessment 

and its limitations.  Further, a comparison between historical and contemporary 

epidemiological studies must be conducted to determine if the risks suggested by the 

risk analysis using the USEPA Risk Assessment for Carcinogens methodology are 

consistent with empirical evidence. 

 

The basis for the model used to perform risk analysis for inhalational exposure to 

benzene used by both the USEPA and FLDEP is published by the USEPA Integrated 

Risk Information System (IRIS) (48).  The risk model currently employed produces 

risk probabilities specifically for the leukemia “tumor type”, based primarily on data 

gathered from the Pliofilm Rubber Factory cohort in a study of workers 

occupationally exposed to benzene, originally described by Infante et al. 1977 (10).  

The data from this cohort is considered the be the highest quality amongst all current 

studies examining the relationship between benzene exposure and leukemia as it has a 

sufficient sample size to provide adequate statistical power, the least amount of 
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uncontrolled ancillary exposures that may result in confounding, and the most 

accurate exposure assessment compared to other occupational cohorts.  This is not to 

say, however, that the exposure assessment conducted in this cohort is absolutely 

precise, in that the direct measurements of exposure do not describe the entirety of all 

working lifetime exposures.  Several exposure matrices have been proposed, based on 

job classification, time spent on the job, and employment duration, combined with 

direct exposure measurements to estimate the cumulative exposures of the Pliofilm 

workers.  USEPA IRIS identifies the exposure matrices proposed by Crump and 

Allen 1984 and Paustenbach et al. 1993 to be the most compelling estimates of 

cumulative exposure, and present both resulting models in their risk analysis 

methodology (48, 113-114).  As the model resulting from the Paustenbach et al. 1993 

is the more conservative exposure matrix (which results in a risk model that produces 

higher risk values than the model based on the Crump and Allen 1984 exposure 

matrix), it is the model commonly employed by regulatory agencies, including the 

FLDEP (113-114).  The resulting IUR of 7.8 x 10-6 has been used to calculate risk 

probabilities in the current research (48). 

 

The second mitigating factor in the estimation of risk is the use of the linearized 

multistage model to extrapolate risk values for exposures below that of which 

exposure data actually exists.  In the USEPA Guidelines for Carcinogen Risk 

Assessment, the following qualification is indicated for risk probabilities produced 

using the linearized multistage model: 
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“It should be emphasized that the linearized multistage procedure leads to a 
plausible upper limit to the risk that is consistent with some proposed 
mechanisms of carcinogenesis.  Such an estimate, however, does not 
necessarily give a realistic prediction of the risk.  The true value of the risk is 
unknown, and may be as low as zero.” (110) 
 
In the current dissertation, the above qualification is pointedly relevant to the 

interpretation of the outcomes associated with the risk analysis of ambient airborne 

benzene levels measured throughout the State of Florida.  As we compare the risk 

values produced in this research with actual exposure/outcome data present in the 

scientific literature, it will become apparent that the true value of risk associated with 

these measured exposure levels, is in fact, almost certainly zero. 

 

4.2 Comparative Analysis 

Rinsky et al. 1981, 1987 produced one of the first epidemiological studies describing 

discrete categories of cumulative exposures to benzene and associated cancer 

outcomes that had both a sufficient sample size to produce statistically significant 

results and a limited amount of confounding chemical exposures (45, 115).  As 

indicated in Table 31, the NOAEL found in that research fell in the category of 40-

200 ppm-years of exposure.  As a result of the risk model proposed by Rinsky et al. 

1981, 1987 the data from this cohort has been scrutinized by several other researchers 

including Crump and Allen 1984, Crump 1994, Paustenbach et al. 1993, and Wong 

1995 with the intent of evaluating both the exposure matrix used by Rinsky et al. 

1981, 1987 as well as the methodology used to develop a risk model (45, 113, 115-

117).  While all authors who evaluated the Rinsky et al. 1981, 1987 exposure 

estimates deemed them to underestimate the actual exposures experienced by the 
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cohort, when evaluating the association between the same discreet categories used by 

Rinsky et al. 1981, 1987, they produced similar results, in that no statistically 

significant association was found between cumulative exposures ranging between 40-

200 ppm-years (or below) and leukemogenesis (45, 113, 115-117). 

 

Several authors who have evaluated this cohort have been quite specific in noting the 

evidence to support the supposition that benzene is a threshold carcinogen (though the 

actual threshold is still debated).  Paxton 1996 used the exposure estimates of Rinsky 

et al. 1987, Crump 1994, and Paustenbach et al. 1993 to compare the association of 

benzene cumulative exposures to leukemias using different exposure categories for 

comparison than previous studies (45, 113, 116, 118).  With any exposure matrix 

used in previous studies, she found no association between benzene and leukemia at 

cumulative exposures below 50 ppm-years, indicating: “The newly gathered 

information continues to be consistent with a threshold model for leukemogenesis by 

benzene” (118). 

 

Wong 1995 used the data from this cohort to analyze the association between 

leukemia (specifically AML), multiple myeloma, and cumulative exposure to 

benzene (117).  The results indicated no association exists for any cumulative 

exposure and multiple myeloma, while the association between cumulative benzene 

exposures and AML were confined to exposures exceeding 200 ppm-years (117).  

Wong 1995 indicates that the concept of specificity has largely been ignored in the 

causal analysis for this exposure/disease relationship, noting:  
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“Three decades ago, Hill set forth criteria for assessment of causation. The 
same criteria were used in evaluating cancer risks related to tobacco in the 
Surgeon General's report on smoking, and by the International Agency for 
Research on Cancer in evaluation of carcinogenicity.  Specificity is one of the 
major criteria for causation analysis. The analysis specific to AML presented 
in this report shows the importance of taking specificity into consideration. 
Previous analyses based on all leukaemia cell types combined have incorrectly 
set the estimated threshold too low but underestimated risk above the 
threshold. The estimated threshold specific to AML was found to be at least 
200 ppm-years based on one set of exposure estimates; and much higher, had 
other exposure estimates (most likely more accurate) been used” (117).  
 
Another large benzene cohort exists, consisting of Chinese industrial workers, which 

is currently under study (47).  While this cohort is larger than the pliofilm cohort, 

significant criticisms have prevented the research from being considered in the 

creation of regulatory levels, as is indicated by the USEPA IRIS:  

“Although the ongoing Chinese cohort studies (Dosemeci et al., 1994; Hayes 
et al., 1996, 1997; Yin et al., 1987, 1989, 1994, 1996) provide a large data set 
and perhaps may provide information in the future to better characterize risk 
of cancer at low dose exposure, their use in the derivation of risk estimates 
remains problematic at present…Limitations of this study include possible 
concurrent exposures to many different chemicals found in the factories where 
the benzene exposure occurred. There is a lack of reliable exposure 
information in the early days of the observation period, when only 3% of the 
exposure estimates were based on actual measurements…The limitations of 
these studies, except for Rinsky et al. (1981, 1987), preclude their use in 
quantitative risk estimation” (48). 
 
Despite these issues, research based on this cohort does provide some valuable 

evidence towards the discovery of a threshold level of cumulative lifetime benzene 

exposure, below which there is no association with leukemogenesis.  Hayes et al. 

1997 provides a comprehensive analysis of the Chinese worker cohort, which 

produced no statistically significant associations between <40 ppm-years of 

cumulative benzene exposure and leukemia, non-Hodgkin’s lymphoma, acute 
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lymphocytic leukemia, acute lymphocytic leukemia and myelodysplastic syndromes, 

or other leukemias (47).   

 

Hayes et al. 1997 did find a statistically significant association when they compared 

all hemotologic neoplasms to their lowest cumulative exposure group (<40 ppm-

years).  In light of the circumstances surrounding that finding, it is difficult to regard 

it as meaningful, in terms of assigning a causal association between low levels of 

cumulative benzene exposure and hemotologic neoplasms.  As was noted by USEPA 

IRIS, and is confirmed by Hayes et al. 1997, the workers in this cohort were exposed 

to a variety of industrial manufacturing solvents, which could not be controlled for in 

analysis (47-48).  As well, to reiterate the proposition made by Wong 1995, 

specificity is often overlooked in the assessment of causal associations between 

exposures and diseases; and in this case, we have an association which is neither 

specific in terms of exposure, nor in terms of disease (119).  As well, when the dose 

response for increasing levels of exposure is examined for this disease category, a 

dose response is notably absent.  The Risk Ratios for each in increasing exposure 

category were reported as: 2.2 (<40 ppm-years), 2.9 (40 – 99 ppm-years), and 2.7 

(>100 ppm-years), displaying no clear increase of risk with relatively large increases 

of cumulative exposure (47).  The lack of dose response found in this study is also 

evident in the outcomes for leukemia.  The Risk Ratios reported for leukemia were 

non-significant at (<40 ppm-years), 3.1 at (40 – 99 ppm-years), and 2.7 at (>100 

ppm-years) (47).  It is not clear from these results that there is an increased risk of 

leukemia from 100 ppm-years of exposure compared to 40 ppm-years of exposure.  
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With a study cohort of 74,828 exposed workers, it is unlikely that sample size was 

limiting factor of the analysis; more likely, this lack of a robust dose-response is due 

to the fact that the cohort is made up of workers from a diverse field of industries 

which makes an accurate exposure assessment difficult (especially when the same 

methodology is used to assign exposures to workers in different environments), as 

well as making it nearly impossible to control for confounding chemical exposures.  It 

is principally these reasons that the USEPA rejects the Hayes et al. 1997 data as being 

acceptable for developing quantitative risk analysis.  In light of these shortcomings, it 

is fair to say that the pliofilm cohort provides clearer evidence of a threshold for 

leukemogenesis due to cumulative benzene exposure (somewhere between 50 – 200 

ppm-years), whereas the Hayes et al. 1997 data suggests a threshold somewhere 

below 40 ppm-years (47-48).  It is certain that the Hayes et al. 1997 data do not 

provide any evidence that there may be any risk of leukemogenesis at exposures 

below 1 ppm-years, and as well, do not provide strong evidence to contradict the 

threshold of  >50 ppm-years found in the pliofilm cohort (45-48, 113, 115-117). 

 

Wong and Gerhard 1995 conducted another cell type specific meta-analysis of 

leukemias associated with cumulative benzene exposures in a cohort of petroleum 

workers from the United Kingdom and the United States (119).  The results of this 

analysis were directly comparable to the findings in numerous analyses in the 

American pliofilm cohort.  No statistically significant associations were found 

between any leukemia type and cumulative benzene exposures below 200 ppm-years 

(119). One of the major strengths of this study is the large sample size, including the 
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evaluation of 208,741 exposed workers (119).  It should be noted that the authors 

indicate exposures may have been underestimated for some groups (especially those 

in the highest exposure groups) because in addition to their less well controlled 

working conditions, it is believed many workers were exposed more than 8 hours a 

day for a 5 day work week, which was the exposure standard used in the exposure 

assessment (119).  This potential underestimation of exposure leads Wong and 

Gerhard 1995 to believe that risk at 200 ppm-years of cumulative exposure may 

actually be overestimated, and that the threshold for leukemogenesis may actually be 

much higher (119). 

 

Rushton and Romaniuk 1997 performed a smaller case control study (91 exposed 

cases), also using petroleum workers from the United Kingdom (120).  Workers in 

this study had significantly lower exposures than found in previously discussed 

studies, the highest exposure group evaluated being > 45 ppm-years of exposure 

(120).  The authors of this study were not able to find any association between 

cumulative benzene exposure and leukemia, supporting the previous findings that a 

threshold exists for cumulative benzene exposures exists for leukemogenesis, and that 

the threshold is in great excess of environmental levels (120). 

 

Guenel et al. 2002 performed a small case control study (72 exposed cases) in Gas 

and Electric Utility Workers (121).  These workers were typically classified has 

having much lower cumulative exposures than other occupational groups previously 

examined, with the highest exposure group being >16.8 ppm-years (121).  The initial 
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findings of this study indicate a statistically significant association between all 

leukemias and cumulative benzene exposures of >16.8 ppm-years, however, further 

evaluation of this study diminishes the importance of this finding (121).  The 

exposure assessment performed by Guenel et al. 2002 suffers from the common 

affliction found in the majority of epidemiological studies examining the relationship 

between benzene and leukemia: the potential underestimation of exposure levels 

(121).  As is often criticized by other researchers examining this issue, low level 

exposures are not found to be specifically associated with any specific cell type, and 

this was apparent in Guenel et al. 2002 who failed to demonstrate any statistically 

significant association between cumulative benzene exposures and any specific 

leukemia, including AML, acute lymphoid leukemia, all chronic leukemias, chronic 

myeloid leukemia, and chronic lymphoid leukemia (121).  Finally, when the odds 

ratio for all leukemias and cumulative exposure group of greater than 16.8 years is 

adjusted for confounding exposures (asbestos, chlorinated solvents, and coal tars), the 

estimated association loses statistical significance, and thereby also loses any utility 

as evidence for determining that low level cumulative benzene exposure is a causative 

agent for leukemia (121). 

 

Glass et al. 2003, 2006 also attempts to find an association between low cumulative 

benzene exposure levels and various hemotopoietic cancers in a small case control 

study (79 total cases, 33 cases of leukemia) examining Australian petroleum workers 

(122-123).  The authors report a statistically significant association between 

leukemias and cumulative benzene exposure at >2-4 ppm-years [OR = 6.1 (1.4–
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26.0)], a non-significant association at >4-8 ppm-years [OR = 2.4 (0.4–13.6)], a 

significant association at >8-16 ppm-years [OR = 5.9 (1.3–27.0)], and a greatly 

elevated significant association at >16 ppm-years [OR = 98.2 (8.8–1090)] (122-123).  

The first notable weakness of these results is the inconsistency of dose response 

throughout the exposure categories (122-123).  As almost all of the cases selected for 

this analysis fall into a narrow range of low level exposures, if a true association 

existed at these exposure levels, one would expect a clear dose-response to be 

apparent when the cumulative exposure essentially doubles by every increasing 

exposure category (122-123).  As the results are presented, it is clear this is not the 

case.  In fact, due the extreme variance in the data, it is difficult to determine if a 

dose-response is occurring between any levels of exposure, even the between the two 

highest categories (122-123).  While superficially, it may seem that a quantifiable 

increase is occurring between the >8-16 ppm-years exposure level (OR = 5.9) and the 

highest exposure level of >16 ppm-years (OR = 98.2), an examination of the 

extensive confidence intervals associated with those OR point estimates indicates two 

important characteristics of these data (122-123).  Firstly, the point estimates for these 

are relatively meaningless (especially for the highest exposure group), as there is 

equal probability that the point estimate indicated by the regression model could 

actually be any value within the 95% confidence interval (122-123).  Therefore, the 

actual strength of association presented in these results is unknown.  Secondly, the 

width of the confidence intervals show a significant amount of overlap between the 

outcomes of the last two exposure groups, indicating that while the point estimates 

would seemingly suggest a tremendous dose response from 5.9 to 98.2, it is actually 
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impossible to ascertain whether or not such a large dose-response is occurring in this 

study, or if any dose-response relationship exists at all at these levels of exposure 

(122-123).   

 

Perhaps the greatest criticism that could be made of this research is the exposure 

assessment methodology.  The authors disclose that they used essentially the same 

methodology of assigning exposure to workers exposed after 1975 as workers 

exposed before 1975 as a result of “uncertainty about exposures before 1975” (123).  

By doing this, the authors have undoubtedly underestimated exposures in this study 

by not accounting for changes in workplace practices and regulations that would have 

led to significantly different exposure levels in the workplace.  In some cases, they 

have attributed more current exposure levels to workers whose principle exposures 

occurred before 1975, which for some workers, represented of 30 or more years of 

their exposure duration (122-123)! 

 

It is obvious that the exposure assessment of the cohort used in Glass et al. 2003, 

2006 has not been scrutinized to the degree that the more highly regarded exposure 

assessment in the pliofilm cohort has.  The research by Glass et al. 2003, 2006 

essentially represents 33 cases of leukemia that produce widely variant measures of 

association, no definitive dose response, and an analysis based on an exposure 

assessment that almost certainly underestimated worker exposure to a significant 

degree (122-123).  In addition, these results are a unique finding, which have failed to 

be replicated by other researchers.  Without addressing these key factors, this research 
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cannot provide adequate evidence to invalidate the threshold exposure level of  > 50 

ppm-years as found in the pliofilm cohort, and without question, the evidence 

provides no support to the supposition that there may be a risk of leukemogenesis 

when exposed to 1 ppm-years or less of airborne benzene. 

 

There have been several other recent epidemiological studies evaluating the 

relationship between benzene exposed workers and leukemogenesis, including 

Collins et al. 2003, who specifically evaluated low level cumulative exposures in their 

analysis (124).  Collins et al. 2003 examined a cohort of 4417 chemical plant workers 

with cumulative exposure categories of: unexposed, less than 1 ppm-years, 1-6 ppm-

years, and >6 ppm-years (124).  No association between cumulative benzene 

exposure and leukemia could be established for any exposure group, the authors 

noting, “The dose rate of benzene and a threshold for exposure response may be 

important factors for evaluating lymphohaematopoietic risk (124).” 

 

Seniori-Constantini et al. 2003 evaluated benzene exposure and leukemia deaths 

amongst 1687 exposed shoe factory workers (125).  To make their results comparable 

to the findings of other larger cohorts, specifically the Pliofilm cohort (Rinsky et al. 

1987, Paustenbach et al. 1993, Crump 1994, Paxton 1996),  similar exposure 

categories were evaluated; that of <40 ppm-years, 40-99 ppm-years, 100-199 ppm-

years, and >200 ppm-years (45, 113, 116, 118, 125).  Seniori-Constantini et al. 2003 

failed to find an association between cumulative benzene exposure and leukemia at 

any exposure level except for those exposed to more than 200 ppm-years.  These 
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results are in direct agreement with those found in the pliofilm cohort, clearly 

supporting historical evidence of a threshold for benzene exposure and 

leukemogenesis (125). 

 

Swaen et al. 2005 evaluated 311 Caprolactam workers in the Netherlands with 

benzene exposure (126).  The authors of this study chose to divide their exposure 

categories into the mean cumulative exposures for each tertile (126).  The mean 

cumulative exposures for each tertile were 3.4 ppm-years, 68.8 ppm-years, and 401.5 

ppm-years (126).  The results of this analysis did not find an association between 

benzene exposure and excess leukemia (126).  An obvious weakness of this study is 

the small sample size of the cohort, though using the tertile divisions created exposure 

categories that were nearly equivalent in size from the first to the third quartile (n = 

94, 88, and 93 respectively) (126).  While this study admittedly does not share the 

degree of statistical power found in previous studies, it certainly adds to the weight of 

evidence supporting a threshold level of benzene exposure below which there is no 

risk of leukemogenesis, and as well, this study contributes evidence to the supposition 

that this threshold exists at or above 50 ppm-years (126). 

 

Similarly, Schnatter et al. 1996 performed a case control study with a small group of 

Canadian petroleum workers (14 cases) to evaluate the relationship of their benzene 

exposure and leukemia (127).  The cumulative benzene exposures ranged from 0 to 

219.8 ppm-years (127).  The authors attempted to assess various exposure categories 

to create the largest exposure groups possible, despite their small sample size, with 
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the highest exposed category being those with 20 to 219.8 ppm-years of exposure 

(127).  The authors of this study failed to find an association between any exposure 

category and leukemia (127).  Obviously, the small sample size would hinder the 

ability to find a significant association between cumulative benzene exposure and 

leukemia if it existed, but it is important to note that the sample size did provide 

enough statistical power to find statistically significant associations between smoking 

history, and a family history of cancer with leukemia (127).  So, while this study does 

have significant limitations, it is consistent with the compilation of studies that 

examine cumulative lifetime benzene exposures (127). 

 

The lifetime cumulative benzene exposures calculated in the current risk 

characterization, extrapolated from the measured exposures from each monitoring 

site, ranged from 0.04 ppm-years to 0.70 ppm-years.  Based on the weight of 

scientific evidence presented, which indicates that the threshold for leukemogenesis 

exists at or above 50 ppm-years of cumulative lifetime benzene exposure, it can be 

seen that the measured exposures in this study are approximately 50 to 1000 times 

lower than cumulative exposures that are capable of producing leukemogenesis.  

Without exception, no research to date has found evidence of an association between 

leukemogenesis and the lifetime cumulative benzene exposures measured in this 

study, of which all fall below 1 ppm-years. 

 

Another finding in the scientific literature that is of direct interest to the current risk 

characterization is that of the relationship between peak exposure concentrations in 
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addition to cumulative lifetime exposure as a driver for leukemogenesis.  Several 

authors have noted that in addition to a significant cumulative exposure ranging from 

50 to greater than 200 ppm-years, an extended period of peak exposure must also be 

experienced in order for leukemogenesis to occur.  Schnatter et al. 1996b found that 

leukemia cases were associated with extended exposures of 20 – 25 ppm using 

minimal exposure estimates, but potentially as high as 50 – 60 ppm using higher 

exposure estimates in addition to significant cumulative exposure (127).  Collins et al. 

2003 noted that there was no indication of risk from the low levels of cumulative 

exposure experienced by their cohort, but that increased risk could be attributed to 

those who were exposed to 100 ppm for 40 days or more (124).  The maximum 

benzene level recorded in the State of Florida from 2003 to 2006, was 134.4 µg/m3 

(0.042 ppm) and can be found in Table 3 for monitoring site 102 in Duval County.  

When comparing these peak levels of exposure to those found in occupational 

settings that may be required to initiate, or otherwise drive leukemogenesis, it is clear 

that this potential mechanism for leukemogenesis does not come into play in terms of 

the ambient environmental exposures reported in this research. 

 

4.3 Statistical Considerations for the Method Detection Limit 

As is indicated in Table 7, the alternative methods of assigning values below the 

MDL did produce statistically different mean values for all monitoring sites in 

Broward County.  This indicates that a considerable number of values within those 

data sets were reported as being under the method detection limit.  The 

meaningfulness of this finding can be interpreted by examining the results of the risk 
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analysis and cumulative exposure analysis between these three data treatment 

methods. 

 

In Table 19, the risk values produced for each monitoring site in Broward County are 

shown for all three methods of assigning values.  The results for all sites, and all 

methods, are homogenous in the following: all methods produce risk values that are 

in excess of the 1 x 10-6 acceptable risk as indicated by the FLDEP.  In fact, the 

differences in probabilities fall on the order of minutia, the largest difference 

occurring in the data from Site 5005 where the largest estimate of risk (assigning the 

MDL) equals 6.00 x 10-6 and the lowest estimate of risk (assigning the MDL/2) 

equals 5.80 x 10-6.  This represents a 0.2 millionth increase in risk using the more 

conservative method.  In Table 25, the cumulative exposure values for all monitoring 

sites in Broward Country are shown.  As values have been rounded to the nearest 

hundredth, no discernable difference is seen in the calculation of cumulative 

exposure, regardless as to which method has been used. 

 

In Table 8 and Table 10, the t-test comparisons are shown for Dade County and 

Orange County, respectively.  These results indicate that no statistically significant 

difference on the outcomes was produced regardless of what method of assigning 

values was used. 

Tables 9, 10, and 12 show the t-test comparisons for Duval, Hillsborough, and 

Pinellas Counties, respectively.  As no values below the method detection limit were 

reported for any monitoring sites in these counties, no statistical comparisons could 
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be made for methodological differences, and obviously, it can be said that values 

under the method detection limit had no influence in the risk analysis or cumulative 

exposure analysis for these any of these county’s monitoring sites. 

 
4.4 Study Limitations 
 
A primary criticism of the current study may be the generalizability of the exposure 

assessment.  Unfortunately, air toxics monitoring at this time is very limited, to the 

extent that few counties have active monitoring sites, and those that do, have very few 

monitors.  While the ability to perform exposure and risk calculations based on actual 

sampling data has the advantage of using a validated methodology to enumerate 

airborne benezene concentrations, emissions modeling has the advantage of 

estimating exposures in locations that are not monitored.  So with the data used in this 

dissertation, it is not possible assert that there are no locations within the State of 

Florida that are polluted with higher concentrations of benzene than are represented in 

this study.  However, an examination of the monitor locations and the proximity of 

potential emission sources would indicate that the monitoring data used in this study 

represents an accurate cross section of typical ambient exposures in populated areas, 

with monitor locations ranging from more rural locations to more industrial locations, 

several within two miles of some of the largest benzene emission sources in their 

respective county.  Indeed, when examining the monitor location maps (Figures 2-7) 

we find that the highest measured ambient levels are found in Duval County.  Several 

of the Duval County monitors are located in dense Commercial/Industrial areas, and 

are consequently subjected to the benzene emissions from these point source 
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polluters.  As well, most monitors are located near major roadways and highways, 

whose fugitive emissions from automobiles contribute significantly to the ambient 

levels of benzene. 

 

Likewise, when we examine the lowest monitored levels, they are found in rural 

areas, such as Site 3002 in Hillsborough County (Figure 4) and in residential areas 

such as Site 5005 in Broward County, which are further removed from both fugitive 

and point source benzene emissions.  While it is fair to say the exposure assessment 

performed in this study is not comprehensive, the results should provide a reasonable 

description of the exposure intensity for a large proportion of the general public. 

 

It has been noted that Duval County uses a different sampling methodology than all 

other Florida Counties.  At the same time, the results indicate Duval County 

measured the highest maximum levels, the highest mean levels, and maintained the 

largest variance in measurements of any county.  Several Duval monitoring sites 

measured peak levels, mean levels, and standard deviations over an order of 

magnitude higher than sites in other counties (Table 3).  A potential cause of these 

differences would be the shorter sample times (3 and 4 hour samples) sometimes used 

by Duval county.  If samples are taken during peak emissions times for a 3 hour 

period, it would potentially overestimate the mean concentrations at that site.  This is 

not clear evidence that the Duval County measurements are erroneous, and the higher 

mean levels may be explained by greater industrial and interstate highway density 

within that county; however the extreme variance found within the Duval County 
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may be indicative of poor sampling methodology that results in an over estimation of 

exposure.  Even if this is the case, however, it does not affect the fundamental 

conclusions of this research. 

 

All research is subject to limitations, the current research being no exception.  

However, the limiting factors in this research are not sufficient to warrant a rejection 

of the primary conclusions drawn from the study results. 
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Chapter 5.0: Conclusions 
 

This investigation used historic airborne monitoring data from six counties in the 

State of Florida to characterize the cancer risk from airborne benzene concentrations 

used current Federal and State regulatory risk characterization methodologies, and a 

comparative risk analysis based on occupational epidemiologic evidence.  Airborne 

benzene concentrations were collected from 23 air toxics monitoring stations in 

Broward, Duval, Orange, Miami-Dade, Hillsborough, and Pinellas counties during 

the years 2003-2006.  Using the risk calculation methodology found in the EPA and 

the Florida Department of Environmental Protection (FLDEP) guidelines, the 

resulting cancer risk estimates ranged from 4.37 x 10-6 to 8.56 x 10-5, which exceed 

the FLDEP’s acceptable cancer risk level of 1 x 10-6 for all monitoring sites.  The 

cumulative lifetime exposures were calculated in ppm-years, by site, and ranged from 

0.036 - 0.702 ppm-years.  A comparative analysis with available epidemiological 

literature revealed that the association between benzene exposure and cancer risk is 

related to cumulative exposure clearly in excess of 1 ppm-years, with a threshold of 

carcinogenesis potentially in excess of 50 ppm-years.  The results of this investigation 

indicate that it is unreasonable to expect additional cancer cases in Florida residents 

due to measured ambient airborne benzene levels, despite the fact that all regulatory 

risk calculations exceed acceptable cancer risk levels in the State of Florida. 
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The implications of these results are highly relevant to contemporary practices of risk 

assessment and risk communication in terms of the economic consequences as well as 

the impact on public perception of risk from regulatory risk assessments.  The FLDEP 

utilizes the same regulatory risk assessment methods found in this research to 

determine remediation levels for soil contaminated with benzene.  The unit risk 

values used to analyze risk from soil intake or water intake resulting from 

contaminated soil is derived from the same cancer slope factor used for determining 

inhalation risk, a product of the linearized multi-stage model. Consequently, risk 

values for those two media have the same validity (or rather lack of validity) as those 

calculated for airborne exposures.   

 

Gasoline fuel stations are common targets of soil remediation in Florida due to 

benzene contamination resulting in risk values above 1 x 10-6 for either soil or water 

intake.  It has been reported that the typical gas station site costs $97,000 for soil 

treatment, with a range in costs from $22,000 to $260,000 (129).  This money is spent 

under the assumption that by remediating the contaminated soil, a significant 

reduction to public health risk will be achieved.  The results of the current research 

indicate that this is clearly not the case in any instance in which the soil or water 

benzene concentration results in a risk 1 to 2 magnitudes of order over the allowable 

limit using the regulatory risk analysis methodology.  Under these circumstances, not 

only are economic resources essentially wasted, but over the course of 26 – 60 

months (the typical remediation period) needless amounts of fuel is consumed, and 

needless amounts of combustant pollution is produced during this process (129). 
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Communicating health risk to the general populace is a significant responsibility held 

by researchers and regulators alike.  Is it a responsible act to communicate to the 

public trust that, essentially, the air they breathe may be putting their health at risk?  

By using the USEPA and FLDEP specified methods and the linearized multistage 

model to “quantify” risk, we are essentially communicating to the public that not only 

does every molecule of benzene in the air pose some calculable amount of risk to 

their health, but further, that the amount of benzene present exceeds the amount of 

risk we, as researchers and regulators charged with serving the public trust, deem 

acceptable.  Clearly, this is not a responsible means of presenting risk and the current 

research illustrates the inherent fallacy in using the current regulatory method to 

assess the health risk of low level carcinogen exposures in the State of Florida. 
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APPENDIX A 
 

Summary of Epidemiological Studies used for Comparative Analysis 
 

Study 
Measure of 
Association NOAEL LOAEL 

Comments on Utility 
for Causal Inference 

Rinsky et 
al. 1987 

SMR 
40-200 
ppm-
years 

200-
400 
ppm-
years 

*High number of 
actual exposure 
measurements 
(considered the 
best exposure 
assessment 
among similar 
studies); Specific 
exposure\disease 
outcomes; 
Significant 
measures of 
association; Clear 
dose-response; 
Consistent results 
compared to 
similar studies.  
Suitable evidence 
for causal 
inference. 
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Paxton 
1996 

SMR 
>5-50 
ppm-
years 

>50-
500 

*Same cohort as 
Rinsky et al. 1987 
with updated 
exposure 
matrices; more 
refined exposure 
categories to 
assess lower level 
exposures; 
Specific 
exposure\disease 
outcomes; 
Significant 
measures of 
association; Clear 
dose-response; 
Consistent results 
compared to 
similar studies; 
Most 
conservative 
measures of 
association using 
the best exposure 
assessment; This 
study is the basis 
for the estimated 
threshold of 
benzene induced 
leukemogenesis 
being in excess of 
50 ppm-years.  
Suitable evidence 
for causal 
inference. 

Wong 
and 
Gerhard 
1995 

SMR 
40-200 
ppm-
years 

200-
400 
ppm-
years 

*High number of 
actual exposure 
measurements; 
Specific 
exposure\disease 
outcomes (cell 
specific analysis); 
Significant 
measures of 
association; Clear 
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dose-response; 
Consistent results 
compared to 
similar studies.  
Suitable evidence 
for causal 
inference. 

Seniori et 
al. 2003 

SMR 

100-
199 
ppm-
years 

>200 
ppm-
years 

*High number of 
actual exposure 
measurements; 
Specific 
exposure\disease 
outcomes; 
Significant 
measures of 
association; Clear 
dose-response; 
Consistent results 
compared to 
similar studies. 
Suitable evidence 
for causal 
inference. 

Wong et 
al. 1995 

SMR 
40-200 
ppm-
years 

200-
400 
ppm-
years 

*High number of 
actual exposure 
measurements; 
Specific 
exposure\disease 
outcomes (cell 
specific analysis); 
Significant 
measures of 
association; Clear 
dose-response; 
Consistent results 
compared to 
similar studies.  
Suitable evidence 
for causal 
inference. 
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Hayes et 
al. 1997 

RR 
<40 
ppm-
years 

40-99 
ppm-
years 

*Large sample 
size; Various 
incomparable 
working 
environments and 
exposures applied 
to all workers; 
Exposure 
assessment 
somewhat 
speculative; 
Lacks specificity.  
Less suitable for 
causal inference. 

Collins et 
al. 2003 

SMR 
>6 
ppm-
years 

N/A 

*Large sample 
size; Examines 
low level 
exposures; Less 
actual measured 
exposures in 
exposure matrix; 
Failed to find an 
association 
between benzene 
exposure and 
leukemogenesis. 
Less suitable for 
causal inference. 

Schnatter 
et al. 
1996 

OR 

20-
219.8 
ppm-
years 

N/A 

*Largely 
speculative 
exposure 
assessment; 
Smaller sample 
size; Relatively 
large statistical 
variance; 
Uncontrolled 
confounders; Less 
desirable case-
control study 
design; No 
definitive dose 
response; Failed 
to find an 
association 



www.manaraa.com

 96 

between benzene 
exposure and 
leukemogenesis. 
Unsuitable for 
causal inference. 

Glass et 
al. 2006 

OR 
Not 
Report
ed 

>8 
ppm-
years 

*Largely 
speculative 
exposure 
assessment; 
Smaller sample 
size; Relatively 
large statistical 
variance; 
Uncontrolled 
confounders; Less 
desirable case-
control study 
design; No 
definitive dose 
response. 
Unsuitable for 
causal inference. 

Glass et 
al. 2003 

OR 
>1-2 
ppm-
years 

>2-4 
ppm-
years 

*Largely 
speculative 
exposure 
assessment; 
Smaller sample 
size; Relatively 
large statistical 
variance; 
Uncontrolled 
confounders; Less 
desirable case-
control study 
design; No 
definitive dose 
response. 
Unsuitable for 
causal inference. 
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Guenel et 
al. 2002 

OR 

>5.5 - 
<16.8 
ppm-
years 

>16.8 
ppm-
years 

*Largely 
speculative 
exposure 
assessment; 
Smaller sample 
size; Relatively 
large statistical 
variance; 
Uncontrolled 
confounders; Less 
desirable case-
control study 
design; No 
definitive dose 
response; Failed 
to find a 
statistically 
significant 
association 
between benzene 
exposure and 
AML. Unsuitable 
for causal 
inference. 

Rushton 
et al. 
1997 

OR 
>45 
ppm-
years 

N/A  

*Largely 
speculative 
exposure 
assessment; 
Smaller sample 
size; Relatively 
large statistical 
variance; 
Uncontrolled 
confounders; Less 
desirable case-
control study 
design; No 
definitive dose 
response; Failed 
to find an 
association 
between benzene 
exposure and 
leukemogenesis. 
Unsuitable for 



www.manaraa.com

 98 

causal inference. 

Swaen et 
al. 2005 

SMR 
401.5 
ppm-
years 

N/A 

*Largely 
speculative 
exposure 
assessment; 
Smaller sample 
size; Relatively 
large statistical 
variance; 
Uncontrolled 
confounders; Less 
desirable case-
control study 
design; No 
definitive dose 
response; Failed 
to find an 
association 
between benzene 
exposure and 
leukemogenesis. 
Unsuitable for 
causal inference. 
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